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SUMMARY

The widespread application of lithium-ion batteries in electric vehicles is hindered by safety concerns, notably 

thermal runaway. Understanding gas generation during thermal runaway is crucial for battery safety design, 

early fault detection, and fire hazard assessment, but existing kinetic models remain inadequate. We investigate 

gas generation behavior of 18650-type LiNi1=3Co1=3Mn1=3O2 cells across varied states of charge, constructing a 

training dataset to develop a chemical reaction neural network model that autonomously explores unknown re

action pathways and corresponding chemical kinetic parameters. By incorporating an additional non-linear 

neural network to predict the mean molar weight of generated gases, the model trains a chemical kinetic mech

anism comprising 7 species and 16 reactions. The resulting mechanism accurately predicts key parameters, 

including gas generation rates and amounts, during thermal runaway. This methodology addresses the current 

limitations in thermal runaway gas prediction, providing a robust framework for enhancing battery safety.

INTRODUCTION

Due to their high energy density, exceptional cycling perfor

mance, and low self-discharge rate, lithium-ion batteries (LIBs) 

have become one of the most widely used power sources in 

electric vehicles.1,2 However, safety concerns related to thermal 

runaway (TR), resulting from uncontrolled side reactions among 

the active materials within the cells, significantly constrain the 

development of LIBs.3–5 During TR, a substantial quantity of 

combustible gases is generated, elevating the risks of fire and 

explosion.6,7

Research focusing on gas generation during the TR process 

holds immense practical significance.8–14 For example, Jin 

et al.15 conducted in situ optical diagnostics to detect lithium 

dendrite growth and the resultant gas composition, identifying 

H2 from the spontaneous reaction between lithium and polymer 

binders as an early warning indicator. Moreover, Jia et al.16

examined the effects of cathode materials (e.g., LiFePO4 [LFP], 

LiMn2O4 [LMO], and LiNi0:8Co0:1Mn0:1O2 [NCM]) on the gas 

release behavior in fully charged LIBs. The results revealed 

that the order of gas release amount before the cell approached 

the separator collapse temperature was LFP > NCM > LMO 

cells. Such insights are crucial for battery shell strength design. 

On the other hand, Zhang et al.17 utilized Raman spectroscopy 

to detect gas components in venting gas across cells with 

different states of charge (SOCs) and compared their explosion 

limits. It was observed that an increased SOC led to a higher 

risk of explosion after TR.

To deepen comprehension of the LIB TR process, more in

sights into the reaction kinetics are necessary.11,18 To this end, 

Richard and Dahn19 pioneered the use of Arrhenius-like expres

sions in describing the heat release behavior resulting from side 

reactions during TR. Subsequently, Kim et al.20 defined the side 

reaction of TR as a four-step process, namely the solid electro

lyte interface (SEI) decomposition reaction, the negative-solvent 

reaction, the positive-solvent reaction, and the electrolyte 

decomposition reaction. Building upon these advancements, 

Ren et al.21 fitted the thermal kinetic parameters of TR reactions 

and successfully predicted the temperature evolution of LIBs in 

oven tests. However, these models focus solely on the heat gen

eration of the cells and lack the capability to predict gas gener

ation behavior, signifying an existing gap in research. Notably, 

recent studies by Mao et al.22 and Guo et al.23 revealed a non- 

linear relationship between gas generation rate and heat gener

ation rate, underscoring the necessity for a novel chemical 

kinetic mechanism.

However, the LIB TR process is inherently complex and multi

phase, presenting challenges in identifying the intermediate 
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species and underlying reaction pathways for gas generation via 

conventional methods. To autonomously discover unknown re

action networks, Ji and Deng24 established a machine learning 

framework known as chemical reaction neural networks 

(CRNNs). By incorporating the fundamental physical laws such 

as the law of mass action and the Arrhenius law into the structure 

of the neural networks, CRNNs offer a physically interpretable 

approach, capable of elucidating reaction pathways and kinetic 

parameters. Using the CRNN-based method, the kinetic param

eters of biomass pyrolysis25 and NCM cathode decomposition 

process26 were revealed. These findings demonstrate the poten

tial of CRNN methods in TR modeling, showcasing its applica

bility in elucidating complex reaction kinetics.

Motivated by the above considerations, the objectives of the 

present study are two-fold: (1) to construct a first-ever LIB TR 

gas generation chemical kinetic mechanism and (2) to enhance 

chemical insights by comparing the discovered pathways and 

chemical kinetic parameters with existing literature. Specifically, 

TR experiments for commercial 18650-type NCM cells with 

different initial SOCs, spanning from undercharged to over

charged states, are conducted to establish a training dataset. 

Employing an additional non-linear neural network to predict 

the mean molar weight of the generated gas, the CRNN models 

train a chemical kinetic mechanism with 7 species and 16 reac

tions, which can accurately predict the key parameters during 

the TR process. Furthermore, the CRNN models provide 

comprehensive elucidation of reaction pathways, demonstrating 

robust alignment with existing literature.

RESULTS

Experiment results

The evolution of surface temperature and inside-jar pressure for 

cells with different SOCs is plotted in Figure 1.34 Consistent 

with the findings of Feng et al.,6 three key thermal characteristic 

temperatures, {T1, T2, T3}, are readily observed to describe the 

TR processes for all cells. Specifically, T1 is the onset temper

ature for the self-heating of the cell, T2 is the separator 

collapsing temperature, and T3 is the maximum temperature. 

Note that T1 monotonically increases from 353 to 377 K with 

SOC decreasing from 120% to 50%. This is reasonable as T1 

is controlled by the SEI decomposition from the anode.27 A 

decreased SOC results in an increase in cell thermal stability, 

and thus increases T1. During a long self-heating period of 

∼ O(1; 000) min, the cell temperature gradually increases and 

finally reaches T2, in which the violent heat release stage of 

TR is initiated.3 Similar to T1, T2 is generally higher for cells 

with lower SOCs. After the temperature reaches T2, a large 

amount of heat is generated within a few seconds, leading 

the cell to reach T3. Note that T3 is decreased with decreased 

SOC, indicating that the corresponding cell is less reactive with 

suppressed exothermic reactions.

On the other hand, the pressure experiences a smooth in

crease before the temperature reaches T2, suggesting less 

amount of gas is generated before T2.

Note that this pressure increase is primarily attributed to two 

factors, namely electrolyte evaporation and gas generation 

from side reactions. The contributions of these two factors to 

the pressure increase are illustrated in Figure S1. However, after 

T2, the pressure rapidly increases to its peak magnitude, P3. 

Moreover, the variations for P3 between cells with different 

SOCs are much more obvious than those of T3, indicating that 

the total amount of released gas greatly differs for batteries 

with various SOCs.

With the above temperature and pressure data, the battery 

venting gas (BVG) amount is obtained by applying the ideal 

gas equation.9,10,22 These experimental results of batteries 

with various SOCs are adopted as the database for the current 

study. Three sets of data with SOC of 120%, 100%, and 50%, 

covering a range from undercharged to overcharged conditions, 

A DCB

Figure 1. Evolution of temperature and pressure for NCM cells with different SOCs 

(A) Evolution of temperature and pressure at 120% SOC. 

(B) Evolution of temperature and pressure at 100% SOC. 

(C) Evolution of temperature and pressure at 70% SOC. 

(D) Evolution of temperature and pressure at 50% SOC. 

See Zhang et al.34
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are selected as training datasets, while the data with SOC of 

70% is selected as the test dataset.

Kinetic model results

As a digital twin of the chemical reaction network, the weights 

and biases obtained in the CRNN model are physically inter

pretable.24,25 As visualized in Figure S2, learned weights and 

biases can be categorized into stoichiometric coefficients of re

actants and products, as well as Arrhenius parameters (Ea, b, 

and lnA). Moreover, in wout, a negative stoichiometric coeffi

cient represents a reactant, while a positive coefficient corre

sponds to a product. The above-mentioned neural network pa

rameters are as such interpreted into learned reaction 

pathways, and the corresponding kinetic parameters of the 

LIB TR process are illustrated in Table 1. Seven species (Li+, 

LIB, BVG, and four other intermediate species, S2-S5) and 16 

reactions (8 reactions for the self-heating process and 8 reac

tions for the violent TR process) are used, as justified in 

methods. Figure 2 then validates the predicted LIB TR gas gen

eration amount with the experimental results. It is readily 

observed that, for the self-heating process, the proposed 

mechanism well predicts the key parameters, including the 

separator collapsing timing, T2, and the corresponding gas 

generation amount, n2, for all the cases with different SOCs. 

Note that, the accurate prediction of T2 and n2 is of importance 

in identifying the initial mass concentration vector, m̂2, Conse

quently, the predicted and measured maximum gas generation 

amount, n3, during the violent TR process also shows good 

agreement, indicating the proposed CRNN derives accurate re

action schemes.

The chemical interpretation of the derived reaction pathways 

also agrees well with the current literature. The main insights re

vealed by the CRNN are listed below.

(1) The active components within LIB initially consume Li+ to 

primarily produce S2 and BVG through R2 and R8. These 

reactions likely represent the initial decomposition phase 

of the SEI layer. The SEI decomposition reaction is typi

cally regarded as the first side reaction during the full TR 

process. Assume that the main component of the SEI is 

(CH2OCO2Li)2, R2 and R8 could yield gas components 

such as CO2 and C2H4, alongside solid residues such as 

Li2CO3.
27

(2) After the SEI layer breakdown, the exposed anode might 

react with the electrolyte, resulting in the generation of 

C2H4 and C2H6.28 As the temperature further increases, 

the electrolyte can evaporate into vapor, such as diethyl 

carbonate (DEC), ethyl methyl carbonate (EMC), and 

ethylene carbonate (EC). Meanwhile, the NCM cathode 

can directly decompose to release O2.29 O2, as an 

oxidant, further accelerates the side reactions between 

the cathode and the electrolyte vapor.4 For these complex 

interactions, the corresponding reaction pathways can be 

explained by R1, R3-R7.

(3) According to the reaction rate coefficients, the activation 

energies for the violent TR process reactions are generally 

lower than those of the self-heating process reactions. 

This suggests that the energy barrier for these reactions 

is smaller, allowing reactant molecules to more easily 

collide with sufficient energy to overcome it. As a result, 

the violent TR process reactions proceed at a faster 

rate, which aligns with the findings of Wang et al.3

(4) Following the separator failure, direct contact between 

the anode and cathode materials could form an internal 

short circuit (ISC).30 The electric energy stored within 

the battery releases and triggers the violent TR. In a recent 

study by Feng et al.,31 in the absence of ISC, the chemical 

crosstalk between the active components instigates the 

Table 1. Learned LIB TR gas generation reaction pathways interpreted from CRNN

No. Reaction Ea (kJ/mol) b ln A

(a) Learned pathways for the self-heating process

R1 0:107 Li+ + 0:083 LIB→0:045 S2 + 0:010 S5 + 0:023 BVG 66.261 0.115 6.887

R2 0:136 Li+ + 0:119 LIB→0:078 S2 + 0:010 S3 + 0:010 S4 + 0:020 BVG 63.782 0.149 7.012

R3 0:095 Li+ + 0:010 LIB + 0:012 S3 + 0:015 S4 + 0:019 S5→0:033 S2 + 0:023 BVG 63.432 0.145 6.933

R4 0:095 Li+ + 0:012 LIB + 0:012 S3 + 0:010 S4 + 0:010 S5→0:018 S2 + 0:019 BVG 67.211 0.106 6.741

R5 0:110 Li+ + 0:019 S3 + 0:013 S4 + 0:010 S5→0:017 S2 + 0:020 BVG 65.230 0.142 6.904

R6 0:103 Li+ + 0:024 LIB + 0:019 S3 + 0:013 S4→0:023 S2 + 0:031 BVG 63.508 0.100 6.952

R7 0:098 Li+ + 0:014 LIB + 0:017 S3 + 0:013 S4→0:011 S2 + 0:010 S5 + 0:023 BVG 66.846 0.119 6.644

R8 0:126 Li+ + 0:030 LIB + 0:021 S3 + 0:014 S4→0:032 S2 + 0:038 BVG 60.876 0.142 6.911

(b) Learned pathways for the violent TR process

R9 0:146 Li+ + 0:117 LIB→0:010 S4 + 0:112 BVG 47.591 0.191 5.828

R10 0:122 Li+ + 0:093 LIB→0:010 S4 + 0:088 BVG 48.255 0.150 5.532

R11 0:111 Li+ + 0:013 S5→0:013 S2 49.966 0.101 5.322

R12 0:119 Li+ + 0:011 S2→0:011 S5 50.362 0.089 5.381

R13 0:106 Li+ + 0:013 S4→0:011 S2 50.826 0.082 5.237

R14 0:140 Li+ + 0:047 LIB + 0:019 S2→0:012 S5 + 0:053 BVG 48.742 0.148 5.621

R15 0:120 Li+ + 0:016 S2→0:015 S4 50.204 0.070 5.356

R16 0:100 Li+ + 0:015 S2→0:015 S5 51.227 0.084 5.291
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violent TR. Even without gas generation,32 these reactions 

are important in triggering TR and can be represented by 

R11-R13 and R15-R16.

(5) At higher temperatures, the electrolyte itself undergoes 

pyrolysis or oxidation with the O2 or other active materials 

released from the cathode decomposition.18 These reac

tions are widely recognized as the main contributor to the 

gas generation.33 As shown in Table 1, R9, R10, and R14 

are responsible for the gas generation from electrolyte 

decomposition.

In addition, the chemical kinetic parameters in Table 1

are validated against those in the literature. In a recent 

experimental study, Mao et al.22 conducted TR experiments on 

18650-type LIBs with a cathode material consisting of 98% 

LiNi0:5Co0:2Mn0:3O2 and 2% LiMn2O4. Two sets of kinetic param

eters were employed to describe the gas generation dynamic of 

the self-heating process and the violent TR process, respectively. 

Figure 3 compares the determined rate constants in this study 

with those in Mao et al.22 As for the self-heating process (see 

Figure 3A), R2, R3, and R8 with higher rate constants are the 

dominant reactions for the BVG accumulation. The rate constants 

of these reactions align well with that proposed by Mao et al.22

Note that, instead of being represented by a single reaction, the 

newly developed kinetic parameters can separately describe mul

tiple reactions, including SEI decomposition, cathode material 

decomposition, and the interaction between the cathode and 

electrolyte, as previously stated. On the other hand, as evident 

in Figure 3B, R9 serves as the primary gas generation reaction 

during the violent TR process, followed by R10 and R14. The 

rate constants of these reactions are comparable with that in 

Mao et al.,22 indicating the accuracy of the autonomously 

explored gas generation dynamic parameters. Note that, other re

actions without BVG generation (R11-R13 and R15-16) are em

ployed to describe the TR process. This kinetic mechanism, 

compared with assuming a one-step reaction scheme, is thus 

more realistic because it also considers reactions between cath

ode and anode materials that do not directly generate gas but 

are still important in triggering the violent TR.

To better understand the proposed chemical kinetics, Figure 4

depicted the species evolution of the LIB TR process for battery 

with an initial SOC of 100%. It is readily observed that S2 and 

BVG gradually accumulate during the self-heating process (see 

Figure 4A). Based on the reaction pathways depicted in 

Table 1 and the reaction rate compared in Figure 3, BVG is pri

marily generated through R2, R3, and R8, while S2 is produced 

through the interactions between LIB, S3, and S4. Moreover, the 

generated S2, BVG, and the remaining LIB participate in the vi

olent TR process (see Figure 4B), in which S2 and LIB consume 

simultaneously to generate S4, S5, and BVG by R9-R16. Similar 

species profile trends are observed for other cases with different 

initial SOCs. The corresponding profiles can be found in 

Figure S3. It is therefore concluded that the autonomously 

learned kinetic mechanism is suitable for predicting the LIB TR 

gas generation process, regardless of the initial SOCs.

DISCUSSION

To further validate the applicability of the proposed mechanism, 

its ability to predict the TR gas generation process for cells with 

varied capacities and cathode materials is tested. Specifically, a 

dataset including the temperature and pressure profiles during 

TR of a 26700-type (26 mm in diameter and 70 mm in length) 

LiNi0:5Co0:2Mn0:3O2 (NCM523) cell with a capacity of 5,000 

mAh is selected from Jia et al.16 Similar to this work, the top 

cap of the cell is removed, allowing full-cycle TR process pres

sure detection. To mimic the larger active material contents in

side the 5,000 mAh NCM523 cell, the embedded lithium ions 

(Li+) amount is increased from 3 to 5. The TR gas generation re

action pathways and chemical kinetic parameters, as listed in 

Table 1, are employed to predict the gas generation amount 

and corresponding pressure during the TR process.

The pressure predicted by the learned CRNN kinetic mecha

nism is compared with that of the experimental data, as illustrated 

in Figure 5. It is readily observed that the proposed mechanism 

well predicted the pressure trace during the self-heating process. 

Moreover, the predicted maximum pressure of TR, Pmax, is nearly 

identical to that of the experimental data. This is reasonable as the 

effects of the enlarged embedded lithium ions content and cell ca

pacity are considered in the simulation. However, during the vio

lent TR, the proposed mechanism predicts a generally smoother 

A

D

C

B

Figure 2. Predicted gas generation amount (lines) and the corre

sponding experimental results (symbols) for NCM TR processes with 

different SOCs 

(A) Predicted and experimental gas generation amounts at 120% SOC. 

(B) Predicted and experimental gas generation amounts at 100% SOC. 

(C) Predicted and experimental gas generation amounts at 70% SOC. 

(D) Predicted and experimental gas generation amounts at 50% SOC.
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reaction process, indicated by the longer time to reach Pmax from 

PSC. This is because the current CRNN model is trained using the 

database of NCM111 cells. As the cathode material varies from 

NCM111 to NCM532, the higher nickel content could lead to a 

more severe and quicker TR process.

To summarize, the CRNN-based model proposed in this study 

shows great potential to predict the TR gas generation process. 

Given the training dataset, the kinetic parameters developed in 

this study are primarily applicable to 18650-type NCM111 cells. 

To further enhance the applicability of the kinetic mechanism 

beyond 18650-type NCM111 cells, incorporating more experi

mental data into the CRNN training process is essential for 

capturing reaction kinetics across cells with different capacities 

and cathode materials.

METHODS

Experimental methods

The LIB cells tested in this study were commercial NCM batteries 

(Shenzhen Doublepow Technology, China), with a diameter of 

18 mm, a length of 65 mm, and a capacity of 2,500 mAh. The 

cathode and anode materials were LiNi1=3Co1=3Mn1=3O2 (NCM 

111) and natural graphite, respectively. The electrolyte primarily 

consisted of DEC, EMC, and EC, with the salts of LiPF6. Four 

SOCs were selected in this study, namely 120%, 100%, 70%, 

and 50%, respectively. Note that the cells were charged and dis

charged three times to rate their capacity and then recharged to 

the desired SOCs by setting the ratio between the charged ca

pacity and the rated capacity.

The experimental setup is consistent with that described in the 

prior study.34 Specifically, an accelerating rate calorimeter (ARC, 

Hangzhou Young Instruction Science & Technology, China) was 

employed to measure the TR behavior of cells with different 

SOCs. The ARC operated in the heat-wait-seek mode9,10 to 

accurately capture the onset temperature of TR and guarantee 

a uniform equilibrium quasi-adiabatic state during the TR pro

cess. Before the TR test, the top cap and safety valve of the 

cell were removed inside a nitrogen-filled glove box to allow for 

the measurement of internal pressure during the self-heating 

process before gas venting. The cells were then put inside a 

stainless airtight jar within the ARC to facilitate the measurement 

of gas generation characteristics throughout the TR process. 

The stainless airtight jar has an inner radius of 39 mm and a 

height of 68 mm, which allows a maximum pressure of 

20 MPa. As the main gas generation process of TR is generally 

rapid,22 the pressure transducer was set to detect the inner pres

sure of the jar with a high frequency of 1,000 Hz. Moreover, a bat

tery testing system (CT-4008-5V20A-A, Shenzhen Neware Tech

nology, China) and a gas chromatograph (GC, Agilent 7890B) 

were employed for the detection of the corresponding electro

chemical and gas-generated properties of the cell during the 

TR process, respectively. Note that, to guarantee the reliability 

and accuracy of the experimental data, the cell TR tests for 

each SOC level were performed multiple times, with at least 

three repetitions to facilitate cross-validation. A detailed com

parison of the different tests is shown in Figure S4. For more de

tails, the readers are referred to our previous studies.23,34

CRNN method

The CRNN has been developed by Deng and co-workers24,25 to 

autonomously discover unknown reaction pathways from the 

evolution profiles of chemical species. In this section, a brief 

overview of the CRNN model will be provided, integrating spe

cific constraints related to LIB TR gas generation process into 

the framework. Specifically, the proposed CRNN models 

describe a system comprising: (1) the active materials within 

the battery as the reactant, donated by LIB, (2) n − 1 intermedi

ate species, namely [S2, S3, ⋯, Sn], along with (3) the battery 

venting gas, BVG, as the products. Note that, in this study, the 

battery SOC status is represented by the embedded lithium 

ion, Li+, within the anode (Lix C6).8,35

A

B

Figure 3. Comparisons of the discovered rate constants for the TR 

gas generation process with the state-of-the-art results by Mao 

et al.22

(A) Comparisons of rate constants during the self-heating process. 

(B) Comparisons of rate constants during the violent TR process.

A B

Figure 4. Species profiles for LIB TR process with a SOC of 100% 

using the learned kinetic mechanism 

(A) Species profiles with 100% SOC during the self-heating process. 

(B) Species profiles with 100% SOC during the violent TR process.
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As an illustrative example, the following reaction, Ri, from the 

entire kinetic mechanism is considered:

v′0Li
+

+ v′1LIB + v′2S2 → v′′3S3 + v′′gBVG; (Equation 1) 

where v′i and v′′i represent the stoichiometric coefficients of the 

reactants and products, respectively. Assuming that the reaction 

orders are equivalent to the stoichiometric coefficients, the reac

tion rate can be determined by three parameters, namely the 

pre-factor A, non-exponential temperature dependence factor 

b, and the activation energy Ea. By utilizing the law of mass ac

tion and Arrhenius law, the reaction rate equation is formulated 

and subsequently rearranged in the following manner:

r = [Li
+
]
v′

0 [LIB]
v′

1 [S2]
v′

2 ATb exp (− Ea =RT)

= exp
(
v′0 ln[Li

+
] + v′1 ln[LIB] + v′2 ln[S2]

+ ln A + b ln T − Ea

/
RT
)
: (Equation 2) 

Subsequently, the production rate of each species in Equation 

1 can be written as:

d[LIB]

dt
= [ _LIB] = − v′1r (Equation 3) 

d[S2]

dt
= [ _S2] = − v′2r 

d[S3]

dt
= [ _S3] = v′′3r 

d[BVG]

dt
= [ _BVG] = v′′gr:

In this study, a single neuron within the neural network is em

ployed to identify the optimal solution of v′i , v
′′
i , and r, thereby 

determining the corresponding production rates. For this single 

neuron, its expression can be written as,

y = σ(wx + b)

= exp ([ v0 v1 ⋯ vn b Ea ]

×[ ln[Li
+
] ln[LIB] ⋯ ln[Sn] ln T − 1=RT ]

T
+ ln A

)

(Equation 4) 

where y is the output, x represents the input, w denotes the 

weights, and σ( ⋅) is the non-linear activation function. As illus

trated in the blue box of Figure 6, the detailed definitions of these 

parameters are based on Equation 2. Specifically, the exponen

tial function exp ( ⋅), is employed as the activation function, intro

ducing non-linearity into the model and enabling the network to 

capture more complex patterns inherent to the reaction dy

namics. The inputs, x, are the logarithmic concentrations of all 

species and the corresponding temperature at current time 

step. The production rates of these species at the subsequent 

time step serve as the outputs, y. Moreover, the input layer 

weights, win, represent the reaction order as well as the Arrhe

nius parameters b and Ea, while the bias corresponds to the 

pre-exponential factor A on the logarithmic scale. Consequently, 

the output weights wout correspond to the stoichiometric 

coefficients.

As shown in the pink box of Figure 6, considering that the LIB 

TR gas generation process involves multiple reactions, the same 

amount of neurons are stacked to form a neural network, facili

tating the discovery of potential unknown reaction pathways. 

Note that the TR experiments conducted in this study quantify 

only the molar value of BVG, released over a specific unit of 

time. To predict the corresponding mass of BVG, its mean molar 

weight, M, is involved in the CRNN framework implemented by 

an extra non-linear molar value network (MVN) module, as shown 

in the yellow box of Figure 6. Here, another neural network is em

ployed for modeling, which integrates the predicted mass output 

from the CRNN (m̂(t)) and a matrix comprising T, P, and [Li+] as 

inputs to predict M. As stated in Koch et al.11 and Golubkov 

et al.,36 the primary components of BVG are the evaporated 

electrolytes, H2, CH4, CO, CO2, C2H4, and C2H6, and vary along 

with time. Therefore, M is constrained within the range of (12,44) 

g/mol, expressed as:

M = 28 + 16⋅σ(XW
M

+ b
M
) (Equation 5) 

X = LayerNorm([m̂(t);T ;P; Li+]);

where m̂(t) is the predicted mass output from the CRNN 

model, W
M 

and b
M 

are the weight matrices and the bias vec

tors for the network, respectively. LayerNorm37 is a normalizer 

used to improve stability, speed up training, and reduce the 

effects of internal covariate shifts in models. The hyperbolic 

tangent function tanh( ⋅) is used as the activation function 

Figure 5. Comparison of the predicted pressure by the learned ki

netic mechanism and the tested pressure16 of a 26700-type NCM523 

cell with a capacity of 5,000 mAh during TR
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σ( ⋅). It converts the input to a range between − 1 and 1, 

centering the output around zero, leading to more efficient 

weight updates and faster convergence.

As for the inference process of the reaction network, the 

CRNN is trained using experimental data. Since the vector of 

species concentration Y evolves with time, the aim is to discover 

a CRNN that satisfies the observed dynamics of _Y while incorpo

rating the constraints mentioned earlier as

_Y = CRNN(Y): (Equation 6) 

To obtain predictions for the mass loss of LIB, an ODE system 

can be formulated using Equation 6 and solved numerically in an 

ordinary differential equation (ODE) integrator as

m̂(t) = ODESolve (CRNN(Y);Y0; T0; [Li
+
]); (Equation 7) 

where Y0 is a vector containing the initial concentrations, T0 is 

the initial temperature, and [Li+] represents concentrations of 

active lithium within the cathode. The resulting solution, denoted 

as ̂m(t), yields a vector of all species concentrations at each time 

step.

To optimize the CRNN model parameters, a loss function is 

defined to quantify the difference between the measured and 

predicted time series of mass loss, m̂(t). To be specific, m̂(t)

can be classified into the mass of solid residuals m̂res and 

mass of venting gas m̂gas. Assuming the initial mass is m0, 

then the mean absolute error (MAE) is adopted as the loss 

metric as:

Loss = MAE
(
mgas; m̂gas

)
+ MAE(mres; m̂res)

+ MAE(m̂(t);m0);
(Equation 8) 

where the first term quantifies the discrepancy between the 

measured and predicted gas mass residuals of BVG. The sec

ond term evaluates the difference between the solid residual 

mass predicted by the CRNN model (m̂res) and the dataset. 

Note that, to facilitate the logarithmic operation presented in 

Equation 2, it is necessary to constrain the mass fraction to 

a non-negative value. To achieve this, a simple clipping mech

Figure 6. Schematic of the LIB TR gas gen

eration kinetic mechanism modeling 

approach 

The left part is CRNN architecture for multi-step 

reactions involves stacking neurons into a hidden 

layer. The right part is the mean molar mass pre

dictor involves a non-linear neural network (up) 

and a neuron for a single reaction (down).

anism is employed as in Ji et al.,25

where the mass fraction, Y , is set to 

max(eps; Y), with eps = 1e − 8 being 

used consistently throughout our work. 

This clipping mechanism may introduce 

a slight imbalance in the total mass. To 

avoid this, the third term of Equation 8

is incorporated to stabilize the ODE solver. This term is pri

marily effective during the early stages of prediction, where 

it prevents the occurrence of negative values in the initial 

epochs. As the optimization progresses and mass conserva

tion becomes strictly maintained, the value of this term natu

rally converges to zero, ensuring no interference with the final 

optimization. The absolute tolerance of the ODE solver is also 

set to eps, which ensures good numerical stability without 

sacrificing time complexity. The differential programming 

package torchdiffeq38 has been instrumental in efficiently 

computing gradients concerning CRNN parameters by 

enabling differentiation across the ODE integrators. 

Leveraging the interpolation-based adjoint method during 

the backward call facilitates gradient computation. Subse

quently, the optimization process employs the Adam opti

mizer39 as our stochastic gradient descent method to learn 

the CRNN parameters.

As readily observed in Figure 1, the LIB TR process can be 

divided into two stages, namely the self-heating stage and the 

violent TR process, employing the characteristic temperature 

matrix {T1, T2, T3}. The self-heating process is typically 

smooth with a slight temperature increase with ∼ O(1;000)

min, while the violent TR process could occur within a few 

seconds.3,6 To maintain the integrity of the system and reduce 

its overall stiffness, two CRNN models are connected to sepa

rately learn the self-heating process and the violent TR pro

cess. Two training approaches are considered, namely the 

sequential training approach and the joint training approach. 

The sequential training approach first trains the self-heating 

process, followed by the violent TR process. While this 

approach may yield two locally optimal models, it does not 

guarantee an optimal solution for the overall process. In 

contrast, the joint training approach simultaneously trained 

both processes with shared parameter settings, as illustrated 

in Figure 7. At the beginning of each epoch, the species con

centration vector, Y , is passed to the CRNN for the self-heat

ing process. This CRNN predicts _Y using the ODE solver. 

Upon completion of the self-heating process, a matrix 

composed of Y at each time step is generated. The final Y 

of this process is then transferred to the CRNN for the violent 

TR process, predicting _Y and generating the corresponding 
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matrix of Y for this stage. These two concentration matrices 

are combined with the MVN network and compared against 

experimental data to calculate the loss function. Backpropa

gation is employed to optimize the kinetic parameters of all 

three networks, repeating across epochs to progressively 

minimize the loss until the network converges. As the loss 

function integrates the losses from both processes as a 

whole, this parallel training strategy enhances the ability of 

the model to capture dependencies and synergies between 

the two processes, minimizes error propagation, and results 

in a more coherent, efficient system that achieves a globally 

optimal solution. Therefore, the joint training approach is 

selected in the following study.

Training strategies

Species and reaction numbers

The number of species and reactions is treated as hyperpara

meters for the CRNN model (the orange box of Figure 6), 

which correspond to the number of nodes in the output layer 

and hidden layer, respectively. In this work, a grid search 

method is employed to determine these two hyperparameters 

by increasing the proposed number of species and reactions 

until the model fitness can no longer be improved. Note that 

the number of species in the self-heating and violent TR pro

cesses should be strictly consistent to comply with the con

sistency of the reaction. Therefore, the number of species 

for both the self-heating and violent TR processes is first 

selected, followed by a grid search to optimize the number 

of reactions for each process. This procedure is repeated 

for different species configurations until the combination 

with the lowest test loss value is selected. The dependence 

of minimum loss functions for the test datasets on the number 

of proposed species and reactions of self-heating process 

and violent TR processes is depicted in Figure 8. It is readily 

observed that the global average loss for the two processes 

is minimized (0.092) when the number of species is set to 

seven. Consequently, seven is selected as the optimal num

ber of species. Under this configuration, different reaction 

number combinations corresponding to the minimum loss 

value are chosen for the self-heating and violent TR pro

cesses, respectively. The results show that eight reactions 

for the self-heating process and an additional eight reactions 

for the violent TR process achieve optimal fitting performance, 

as highlighted by the red circle. Note that this configuration 

also provides the best fitting performance for the BVG gas 

prediction (the first term of Equation 8) and the residual 

mass prediction (the second term of Equation 8). For further 

details, readers are referred to Figure S5.

Learning rate and gradient clipping

The same training strategy is applied for both the self-heating 

and violent TR processes, using learning rate annealing to 

fine-tune the model. The initial learning rate is set to 5e-4, 

and decreases by a factor of 0.2 every 500 epochs until reach

ing a minimum value of 1e-5. In addition, gradient clipping 

with a threshold of 1e-2 is used to avoid gradient explosion 

when solving the ODE. Correspondingly, the maximum step 

size of the ODE solver is restricted to the distance between 

two adjacent data points to ensure solver stability. Each pro

cess is trained for at least 2,000 epochs, with each epoch 

involving parameter updates under different experimental 

conditions. To stabilize the training process and reduce over

fitting, regularization techniques are incorporated into the 

training process. Specifically, L2 regularization is added to 

the loss function, and mean-variance normalization is applied 

at the input layer. These settings facilitate a more robust and 

generalizable solution. Moreover, to ensure the stability of the 

ODE solution process, the MVN module is not updated during 

the first 300 epochs, minimizing its impact on the other 

Figure 7. Flowchart of the joint training approach
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variables as much as possible. During the training process, if 

both test and train losses exhibit a continuous increase, the 

flexibility of MVN allows for the training to be early stopped. 

By adjusting the MVN structure, the training can proceed 

more effectively. Figure 9 shows the evolution of the loss func

tion value during the CRNN training process using the finest 

species and reaction numbers obtained in Figure 8. As seen 

in Figure 9, the loss function value gradually converges after 

around 600 epochs. Note that, due to the distribution differ

ences between the training and test sets, slight fluctuations 

in test loss can still be observed around 600 epochs. Howev

er, stopping training at the point of minimum test loss does 

not necessarily ensure a globally optimal solution. Refining 

the MVN structure and continuing training beyond this point 

further optimizes the model performance on the training set, 

achieving a better balance between the training and test 

sets. Therefore, these fluctuations do not indicate instability 

but rather reflect the ongoing optimization process of the 

model. After keeping the training process for another 200 

epochs, the loss function value stops decreasing at a rela

tively low magnitude 0.08. With a test loss as low as 0.08, indi

cating that the training is not overfitted. By comprehensively 

considering the loss of both the training set and the test set, 

the optimal model is selected to obtain the final kinetic 

parameters.
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Supplemental Notes

Note S1. The evaporation of the electrolyte solvent

The evaporation of the electrolyte solvent is considered as one of the contributors of BVG.

Despite the presence of inert gas, the internal pressure of the airtight jar increases due to two

primary reasons, namely the evaporation of the electrolyte, Pele, and subsequent side chemical

reactions during TR, Pg. The partial pressure of the airtight jar before T2 due to Pele and Pg are

plotted as a function of temperature in Figure S1. Specifically, without gas generation due to side

reactions, Pele is assumed to be equal to the saturation pressure of the electrolyte at the vapor-liquid

equilibrium (VLE), Psat, as represented by Eq. 1.

Pele = Psat = ea−
b

T−c , (1)
where Psat obeys Antoine’s equation [1, 2] with a = −1.617, b = 74.86, and c = 309.55 for

the present set of data.

Note S2. Species evolution

Figure S3 depicted the species evolution of the LIB self-heating and violent TR processes for

cells with initial SOs of 120%, 70%, and 50%, which show similar trends with that of SOC 100%

condition.

Note S3. The repeatability of the experiments

The repeatability of the experiments in this study is thoroughly evaluated through the repetition

of each test at least three times. Figure S4 displays the temperature rise rate, dT/dt, as a function

of temperature across four distinct tests for NCM cells with 100% SOC. It is evident that dT/dt

for these experiments are nearly identical. Key parameters, including the onset temperature for TR

(T1), separator collapsing temperature (T2), and the maximum temperature rise rate ((dT/dtmax)),

remain almost consistent across the four tests.
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Note S4. The number of species and reactions

The dependence of minimum gas and mass loss values for the test datasets on the number of

proposed species and reactions is depicted in Figures S5 A and B, respectively. It is evident that

the prediction of gas and mass loss achieves the best-fit performance during the combination of 7

species and 8 reactions for the self-heating process, along with another 8 reactions for the violent

TR process.

Supplemental Figures

Figure S1. Partial Pressure due to the Evaporation of the Electrolyte Solvent
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Figure S1: The partial pressure due to Pele and Pg as a function of temperature for NCM cells with different SOCs,
modified from [3].

2



Figure S2. Learned CRNN weights and biases

(A) Chemical reaction kinetics parameters of the self-heating process.

(B) Chemical reaction kinetics parameters of the violent thermal runaway process.

Figure S2: Learned CRNN weights and biase.
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Figure S3. Species Profiles of TR process for LIBs with Different SOCs

(A) and (B): 120%SOC

(C) and (D): 70%SOC

(E) and (F): 50%SOC
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Figure S3: Species profiles of self-heating and violent TR process using the learned kinetic mechanism for LIBs.
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Figure S4. Repeatability of the Experimental Results
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Figure S4: Comparison of the evolution of temperature rise rate, dT/dt, for NCM cells with 100% SOC during
thermal runaway between different tests.

5



Figure S5. Heat Map of the Minimum Gas and Mass Loss Values for the Test Datasets

Figure S5: Heat map of the dependence of minimum loss functions for the test datasets on the number of proposed
species and reactions.
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Nomenclature List

Nomenclature

b non-exponential temperature dependence factor

Y0 vector containing the initial concentrations

m̂ initial mass concentration vector

m̂(t) vector of all species concentrations at each time step

m̂gas mass of venting gas

m̂res mass of solid residuals

w weights

x input to the neuron

xi production rate of each species

σ(·) nonlinear activation function

A pre-factor

b bias

Ea activation energy

n2 gas generation amount at separator collapsing timing
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n3 maximum gas generation amount

P3 maximum pressure

T cell temperature

T0 initial temperature

T1 onset temperature

T2 separator collapsing temperature

t2 separator collapsing timing

T3 maximum temperature

v′
i stoichiometric coefficients of the reactants

v′′
i stoichiometric coefficients of the products

y output of the neuron

M̄ mean molar weight

m̂2 initial mass concentration vector for the violent TR process

Li+ concentrations of active lithium within the cathode

n the molar number of battery venting gas

ARC accelerating rate calorimeter

BVG battery venting gas

CRNN chemical reaction neural network
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DEC diethyl carbonate

EC ethylene carbonate

EMC ethyl methyl carbonate

GC gas chromatograph

H-W-S heat-wait-seek

ISC internal short circuit

LFP LiFePO4

LIB lithium-ion battery

LMO LiMn2O4

MAE mean absolute error

MVN molar value network

NCM LiNixCoyMnzO2

SEI solid electrolyte interface

SOC state of charge

TR thermal runaway
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[1] P. T. Coman, S. Mátéfi-Tempfli, C. T. Veje, R. E. White, Modeling vaporization, gas generation

and venting in li-ion battery cells with a dimethyl carbonate electrolyte, J. Electrochem. Soc.

164 (9) (2017) A1858.

[2] P. Qin, J. Sun, Q. Wang, A new method to explore thermal and venting behavior of lithium-ion

battery thermal runaway, J. Power Sources 486 (2021) 229357.

[3] J. Zhang, Q. Guo, S. Liu, C. Zhou, Z. Huang, D. Han, Investigation on gas generation and

corresponding explosion characteristics of lithium-ion batteries during thermal runaway at

different charge states, J. Energy Storage 80 (2024) 110201. doi:https://doi.org/

10.1016/j.est.2023.110201.

10

https://doi.org/https://doi.org/10.1016/j.est.2023.110201
https://doi.org/https://doi.org/10.1016/j.est.2023.110201

	XCRP102563_proof_v6i5.pdf
	Chemical reaction neural networks to map lithium-ion battery thermal runaway gas generation
	Introduction
	Results
	Experiment results
	Kinetic model results

	Discussion
	Methods
	Experimental methods
	CRNN method
	Training strategies
	Species and reaction numbers
	Learning rate and gradient clipping


	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References



